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ACQUIRING GENERALIZATIONS TO ORGANIZE HUMAN DATABASES

In order to act intelligently within their environment, biological or mechanical
agents must possess an internal model of that environment and how their actions will
modify it (see Craik, 1943; Johnson-Laird, 1983; Gentner and Stevens, 1983). The
objective of this research was to investigate how humans learn internal models
("concepts") to characterize general categories of training instances (i.e., objects, events,
or situations), and how these models facilitate the acquisition, organization, and retrieval
of new information. We are primarily concerned with concept learning as it occurs in
unsupervised environments, in which the learner must explore a domain of objects for
themselves without a teacher, searching for regularities, consistencies, and clusters of
correlated features in the objects. We assume that people use these regularities to invent
or create subjective categories by which to organize the domain of objects, to control
their expectations about and attention to these objects, and to guide their manner of
recording specific instances into memory. Although unsupervised learning occurs
continually in everyday life and in scientific discovery (where new concepts must be
invented to deal with a novel domain), it has been little investigated in the psychological
laboratory. These issues are probably central to a scientific understanding of human
intelligence, since concepts are crucial to our abilities to learn, reason, and communicate.
Furthermore, the research described here may shed light on central functional properties
of human learners that could have direct practical application, by aiding in the design of
training programs, instructional materials, computer-based learning systems, and the
testing and selection of personnel.

A. Clapper, J. P., Rehder, B., & Bower, G. H. A computational model of unsupervised
concept learning. In preparation.

We have developed a computational model describing how people learn concepts
and use them to guide their processing of specific instances during unsupervised learning.
We view this model as instantiating a collection of heuristic principles that guide
peoples' construction of category models as they explore a new domain. One of our
assumptions is that people will create a new category in reaction to the failure of old ones
to adequately describe an unusual stimulus. In so doing, they follow a heuristic principle,
namely, if several properties of a new instance are surprising or inconsistent with one's
norms for its assigned category, then a new category should be created to describe this For
unusual case. Within a category, we assume that people learn to ignore properties that
consistently recur across instances and to selectively encode properties that cannot be
predicted on the basis of their current model of the category. By this selection, learners ed
reduce the amount of information they need to record to learn specific instances; the tto
selection also causes learners to notice facts that might provide a basis for modifying or
augmenting their current concept models. An informal description of the process model
is provided below. The information processing in this model invo es the following on/
steps: 0, Availability Codes
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1. Retrieve the Best-Fitting Category. When a novel stimulus is encountered, it
is automatically categorized by matching a sample of its features (specific values of
attributes) to a set of attribute-norms for each candidate category, and then selecting the
best match. Examples of attribute-values would be large or small wings on an insect,
long or short snout, rounded or angular head, and so on. The norms for a category are
represented as a collection of strengths of association between the category and each
value of an attribute. These strengths reflect the relative expectedness or availability of
this attribute value, i.e., its frequency and recency among previous category members.

2. Evaluate the Instance. Once a stimulus is categorized, the norms for that
category are used to interpret the instance and determine which features are most
"informative" for learning about it. These features will then receive more attention or
encoding resources. Although several definitions of "informativeness" are plausible, all
capture the intuition that a value's informativeness increases with its unpredictability or
surprise valve. Importantly, this principle implies that consistent, highly expected values
of an attribute (henceforth referred to as defaults) will be considered uninformative,
whereas the informative features will be those that are unusual or not specified in
advance by the concept. We are currently exploring several alternative indices of
informativeness in our computer simulations, and will compare our simulation results to
data from the proposed experiments to choose the best-fitting index.

3. Encode the Instance. After categorizing the instance and assigning
informativeness to each of its values, the next step is to record the instance into memory.
Here, we assume that the features of an instance compete for a fixed attentional or
encoding capacity, which must be distributed among them in such manner as to
maximize the informativeness of the features encoded. The model assumes that the
amount of capacity allocated to encoding a given value is proportional to its
informativeness relative to that of the other features of the stimulus. The encoding
process produces a list of features with strengths stored in memory as the pcrsisting trace
of the instance. A feature's strength in this record depends on how much attention it
received at encoding, which depended in turn on its informativeness.

4. Updating Category Norms. The model assumes that people incrementally
update their norms for the activated concept after each presented instance. Two cases are
distinguished according to whether the current instance is adequately covered by a
previous category or, due to its unusualness, requires the creation of a new category.

(A) Assimilation to a Previous Category. Normally, instances are assimilated to
the category used to evaluate and encode them. The norms of this category are adjusted
by increasing the strength of each presented value in proportion to how much attention it
received during encoding. One consequence of this updating rule is that repetition of a
value has progressively diminishing effects on its strength in subjects' category norms.
That is, because subjects pay relatively little attention to default values, new instances
cause little change in their existing strengths.

(B) Create a New Category before Assimilating. New concepts are triggered by
surprise, i.e., whenever multiple failures of the subject's category expectations (two or
more in the simulation) occur together i, the same instance. (An "expectation failure" is
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defined as any value whose informativeness exceeds some internal criterion, and so is
taken as inconsistent with the subject's norms for that attribute). If a new category is
triggered by an unusual instance, then the instance will be assimilated to it and will not
affect norms for previously-existing concepts.

The new concept is created by (I) generating new norms for the unusual
attributes which caused the expectation failures, and (2) transferring norms for the
remaining attributes from the "source" concept originally used to interpret the instance.
To create a new norm for an attribute, the model assumes that subjects "reset" the
strength of all its values to a low, baseline level, and then increase the strength of the
presented value in proportion to the large amount of attention it receives during
encoding. We assume that the source and new category share norms for attributes that
have the same default values; these shared norms characterize a more inclusive
(superordinate) class the includes both the new and source concepts as subordinates. In
this manner, continuing exploration of a domain tends to build up a nested default
hierarchy based on superordinate and subordinate relations and property inheritance
among the concepts.

5. Retrieving Features from Instance Memories. When people attempt to
remember the features of an instance, a limited retrieval capacity (e.g., spreading
activation) is divided among the features in its underlying memory representation; the
activation received by each feature increases with its strength relative to the combined
strength of all the features of that instance. This rule implies that the more features that
are strongly associated with an instance, the more difficult it should be to retrieve any
particular one. This fact has received extensive empirical validation in analogous
memory experiments; the more independent facts that people are taught about a
particular topic or item, the more time they require to verify any one of them from
memory (see 1. R. Anderson, 1976, 1983, for reviews of this research). This
phenomenon is known as the fan effect or as associative interference.

------------------------------------

Insert Figure 1 about here
------------------------------------

Our assumptions about encoding and retrieval imply differences in the way
default versus distinctive features of an instance are remembered. Because of their
predictability, the default features of a category should have very low strengths of
association with particular instances. To a first approximation, we may assume that
subjects omit these features entirely from their memory representations of specific
instances. Rather, the defaults are noted as properties of the general category and these
can be inferred for specific instances by property inheritance. In such a memory
organization, category defaults are effectively segregated off from the distinctive features
of the individual instances (see Figure 1). The exemplar with its distinctive features is
recorded as a "subnode" in memory pointing to the category node with its associated
defaults. As a result, in retrieving instance-distinctive features, the system avoids fan
effects due to category features. This "subnoding" conf,rs a major advantagc on this
memory organization for later information retrieval, in addition to the economy of
learning and storage that results from the encoding process used to create it. This
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memory organization helps solve the so-called "paradox of interference", which is that
experts with vast domain knowledge do not have the slowing of retrievals that
interference theory alone would have expected (Smith, Adams, & Schorr, 1978). Our
subnoding solution is similar to earlier solutions of the paradox that were proposed by
Reder & Ross (1983) and Anderson (1983). We will return later to this topic.

Comparison to Alternative Approaches

Our model differs in several ways from previous models of unsupervised
learning. As one example, our model learns incrementally, modifying its category norms
in response to each presented instance. This property contrasts to several statistical
clustering models (e.g., Michalski & Stepp, 1983; Fried & Holyoak, 1984) that do not
learn incrementally; i.e., those models do not alter norms from individual cases examined
one by one, but instead compute parameters of a classification scheme after analyzing a
complete set of instances. Incremental learning is an attractive property for a
psychological model because humans are clearly capable of learning on a case-by-case
basis; moreover, humans are sensitive to the order in which instances are seen, whereas
the omniscient AI models typically arrive at concepts that are independent of the order of
seeing examples. A second advantage of the present model is that it makes explicit the
role of generic concepts in the interpretation, analysis and recording of novel cases; in
turn, the model shows how the processing of specific instances affects the learning of
category-level expectations. Most previous models of category formation are strictly
"bottom-up", in the sense that they specify how instance information is used to form
concepts but not how the concepts in turn determine the encoding and representation of
further instances. By exploring these issues in theory-guided experiments, we hope to
shed light on how concepts function in normal cognition, an issue that has not been
emphasized by previous theories of category learning.

Importantly, most previous models of concept learning were formulated to deal
only with the classification of instances into categories, and did not consider the problem
of storing those instances in memory for later reproduction. Consequently, they assume
that learners become more likely to attend to attributes whose values consistently co-
occur across category members (i.e., that are diagnostic of category membership, e.g.,
Billman & Heit, 1988). While this process is acceptable for classification, it is not
adequate for learning and retrieving descriptions of specific instances. For example, such
increasingly focused sampling would lead to less and less learning about the
distinguishing features of specific instances. In addition, a learning process that focuses
solely on classification will be blocked or very slow in learning specific subcategories
that are differentiated within more general categories. For example, once having learned
to differentiate oak trees from maple trees, people operating under this limitation would
be prevented from attending to more subtle properties that differentiate various
subspecies of oaks because they would be focusing instead only on features common to
all oaks. Such a focus contrasts with more naturalistic learning, in which people consider
known categories as "background", and proceed to focus on more subtle distinctions
between instances that might form a basis for learning more differentiated categories.
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B. Clapper. J. P. & Bower, G. H. The role of category knowledge in encoding and
remembering instances. Submitted for publication.

The memory experiments described in this article weni" designed to demonstrate
that people would learn and represent instances of a well-known category in terms of
their general schema of that category, as predicted by our information-processing model.

Experiment I

This experiment aimed to show that when learning instances of a well-known
category, defaults and non-defaults would be stored separately in memory, and only
non-defaults would be explicitly recorded as facts about individual instances. In this
experiment, subjects learned instances and categories of astronomical stars, described by
lists of constituent chemical elements. They were first several taught categories defined
by collections of co-occurring elements; we then examined their learning and later
retrieval of the properties of specifically-nam ed stars (instances). Although we did not
mention the parent category of an instance, each instance possessed all the default
features of its parent category, plus one or more extra features not universally present in
instances of that category. We found that instances with more of these distinctive
features took subjects longer to learn, but that the number of category defaults possessed
by an instance had no effect on subjects' learning rates. This indicates that subjects did
not record such predictable defaults when learning the instances, consistent with our
theory of a model-based encoding process. We also found that the time required by
subjects to verify the features of an instance in a later recognition test increased with the
number of distinctive features the instance possessed, but not with the number of
category defaults it had. This lack of fan effects suggests that defaults were retrieved
from the general schema rather than being stored directly with instances, as the
distinctive features were. This segregation of general and specific information could
function to prevent general knowledge that a person accumulates about a category from
interfering with their ability to retrieve facts about specific instances.

Experiment 2

The results of the previous experiment were highly consistent with the model,
but that experiment could be criticized on the grounds that subjects were directly taught
the categories we wanted them to know, and so the results might not apply to situations
in which categories are induced from individual instances. Thus, a second experiment
was constructed to extended those earlier results to a task in which subjects induced
concepts for themselves in an unsupervised environment (i.e., they were not given
corrective feedback to help them discriminate instances of the different categories). In
this experiment, subjects had to study then recall many stimuli (4- to 6-item sequences of
uppercase consonants) in a long series of study-test cycles similar to the familiar
"Brown-Peterson" short-term memory task. The stimuli were from two different
categories, each defined by a different group of co-occurring properties (specific letters-
in-positions); we expected that subjects would discover these categories from their
experience with the training instances, and use them to improve their recall performance.
As in tUe previous experiment, the results showed that, once having learned the
regularities in the first few training instances, subjects' learning of further instances was
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affected only by the number of distinctive features (letters) they possessed, and not by
how many defaults they had. Their learning of the distinctive features of category
members was also improved relative to the corresponding features of stimuli for which
no generic concept had been learned, consistent with our hypothesis that a concept would
help learners to focus their encoding capacity on such informative properties. This result
is consistent with the attentional biases and performance benefits that we expect to
accompany the learning of an internal model of a category.

Experiment 3

A factor that limits the generality of the preceding two experiments is that in
both the defaults were present with 100 percent reliability in every exemplar of the
experimental categories. By contrast, real-world categories are often somewhat
indeterministic in the features their members possess, and even highly typical features
(say, "flying" for the category "birds") may be absent or altered in specific instances (e.g.,
penguins are birds that swim but cannot fly). Thus, we designed a second short-term
recall experiment, similar to the last except that only a single category was presented to
each subject and the defaults (specific letters-in-positions) were occassionally missing
and replaced by an alternative, surprising value (letter).

In this experiment, the reliability of the defaults (i.e., percentage of instances in
which they were present) was varied across different groups of subjects (60, 70, 80 and
90 percent, plus a control group that saw randomly-contructed instances for which no
defaults could be learned). We found that the recall of variable (unpredictable) features
of the instances was higher the more predictable were the defaults for a given group.
That is, the greater the proportion of instances in the group that possessed a given default,
the less informative subjects considered it to be for recording any particular instance;
thus, the default would compete less with the variable attributes for attentional resources
at encoding. We also found that subjects within each group showed poorer recall of the
variable features of an instance the greater the number of default exceptions it contained.
Such exceptions posses a high level of discriminative informativeness and compete
strongly with the other features of an instance for attentional resources during encoding,
thereby reducing their initial learning and later recall.

Importantly, although decreasing the predictive reliability of subjects' category
models reduced their functional benefits on recall performance, subjects were still able to
exploit their models to some extent even when the defaults were fairly unreliable, i.e.,
recall benefits were observed when defaults were present in only 70 or 80 percent of the
instances. Thus, this experiment shows that our theory of unsupervised learning
generalizes to domains in which defaults occur probabilistically, and that the functional
benefits that accompany learning of a category model depend on the overall reliability of
the model's predictions and its degree of match to specific instances.
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C. Clapper, J. P. & Bower, G. H. The impact of category knowledge on the similarity of
instances. Submitted for publication.

Experiment I

Our model's prediction that people primarily attend to distinctive information
while ignoring category defaults can be tested by investigating people's judgments of
how similar various category members. should appear to each other. We predict that a
feature's weight or impact on a judgment of the similarity of two category members
should be proportional to its informativeness, as specified by that category. Therefore,
unexpected, novel, and surprising properties of the stimuli should tend to dominate
subjects' comparisons, while predictable category features should tend to be ignored.

Our first experiment to test this hypothesis consisted of a series of similarity
judgments (on a 20-point scale) between many pairs of instances of a single category
(pictures of fictitious insects that varied in several attributes, see Figure 2). In some of
these pairs, one or both of the instances were missing a feature that was normally present
in members of that category. When this surprising absence occurred as a common feature
of the instances, we expected their similarity to be increased relative to an otherwise-
equivalent pair in which the default value was present. And when the instances differed
on a normally-consistent attribute, e.g., when one instance had the default value and the
other had a diffc..ent, unexpected value, we expected that this surprising difference would
reduce their rated similarity more than a comparable difference between two familiar
values of a highly variable attribute. The latter prediction was confirmed by the data, but
in this first experiment we found little evidence that pairs in which both instances lacked
an expected default would be rated more similar than normal pairs.

------------------------------------

Insert Figure 2 about here
------------------------------------

Experiment 2

We ran several further experiments to pursue our "shared absence" hypothesis;
unfortunately, subjects in these experiments tended to rate similarity by simply counting
differences between the instances and ignoring their common features, so that our
manipulations of common features had little effect on their ratings. We have now
overcome this problem in new experiments in which subjects rate the similarity of
specific pairs from memory, given only the names of the instances learned earlier. Since
experiences tend to be remembered by their distinctive or unusual properties, we
expected similarity ratings of remembered instances to be dominated by their shared
exceptions. In a first experiment of this type, we obtained a significant increase in
similarity due to the shared absence of a default. This result confirms our assumptions
about the effects of category learning on the underlying memory representations formed
of stimulus patterns, and indicates that this similarity rating task may have considerable
promise in further research on these issues.
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D. Clapper, J. P. & Bower, G. H. Learning and applying category knowledge in
unsupervised domains. To appear in The Psychology of Learning and Motiva:ion,
Vol. 27, G. H. Bower (Ed.), New York: Acaocmic Press, 1991.

This chapter describes the experiments listed below, plus the information-
processing model and several of the experiments described earlier.

Experiment I

A distinctive feature of this project is our concern with observational or
unsupervised learning, because of its importance in naturalistic learning and because
characterizing the concepts that can be so learned might help clarify the vague but
important notion of a "natural" concept. To investigate such observational learning, we
have developed a new task that allows the evolution of a category model to be observed
on a trial-by-trial as it is being learned. In this task, subjects are shown a series of
instances and asked to list the distinguishing characteristics of each. In a first experiment
of this type, subjects were asked to list the distinguishing features of a series of instances
from a single category. After the first few trials, they mentioned the presence of expected
(default) attributes much less frequently than variable attributes, indicating that they had
learned that the presence of these features could be taken for granted (see Figure 3).
Moreover, when a default was absent from a specific instance, subjects were highly likely
to note this surprising absence; listing of th- attribute would then be elevated for several
trials before returning to baseline. The overall pattern of listings resembles the cycle of
habituation to a repeated stimulus, dishabituation to an unexpected change in the
stimulus, and gradual re-habituation over the following trials.

------------------------------------

Insert Figure 3 about here

Experiment 2

This experiment extends Experiment I by demonstrating the spontaneous
acquisition of two contrasting categories in an incidental learning situation (i.e., subjects
were not explicitly asked to search for categories or correlational rules among the
instances). The categories were distinguished by different default values on several
attributes. Instances of one category ("Category A") were presented for a first block of
16 trials, and then instances of another category ("Category B") were presented for a
second block of the same length; a series of eight transfer trials then ensued in which
instances of the two categories were randomly interspersed in the sequence. As expected,
subjects gradually learned the Category A defaults during the first block of trials, and
decreased their listing of these properties accordingly. When they encountered the first
instance of Category B, which had contrasting values on several of the consistent
attributes of Category A, subjects at first greatly increased their listing of these attributes.
Over the next several trials, they gradually reduced their responsing to these attributes
and returned to listing only the variable features of instances as the default values of the
new category were learned. These listing patterns reveal orderly learning curves for the
acquisition of the two concepts (see Figure 4). Importantly, subjects did not show a
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significant increase in their response to the the default values of either category during
the mixed block. This indicates that they had acquired stable concepts which they could
apply across different contexts, rather than merely showing local patterns of habituation
and dishabituation caused by "runs" of instances with repeated values.

------------------------------------

Insert Figure 4 about here
------------------------------------

Experiment 3

Our theory assumes that people create new category models mainly in response
to failures of their previously-existing models. The stronger the specific expecatations
that are violated by a given instance, the greater should be the likelihood of creating a
new category around that instance. In the previous experiment, we obtained clear
learning of both A- and B-categories by presenting the instances blocked by category, so
that the subjects had time to build up strong A-defaults prior to encountering their first
B-instance. This training sequence maximized the probabilities that the contrasting B-
defaults would appear highly surprising and trigger a new category, rather than merely

being assimilated into the existing Category-A norms. By contrast, our theory expects
that interspersing A- and B-instances in random sequence from the start would interfere
with subjects' learning to discriminate the separate categories; this should occur because

subjects would have seen only a few A-instances before the first B-instance was
presented, increasing the chance that they would start off assimilating instances of the
two categories together into a common set of norms.

We recently completed an experiment in which we tested this prediction. The
stimuli were the same as those used in the previous study, except the instances of the two
categories were presented in a randomly interspersed sequence rather than being blocked
by category. The pattern of attribute listings from this experiment were consistent with
our theory's predictions about sequencing effects. Significant learning of the category
defaults was observed, i.e., subjects learned to list variable attributes significantly more

often than defaults by the end of the experiment. However, it is clear from inspection of
the data displayed in Figure 5 that this leaning was much poorer than that observed in
the prior blocked-by-category experiment. Subjects' listing of defaults in this experiment
never declined to the low level that they did in the previous studies. Moreover, what
learning did occur was accomplished much more slowly when the categories were
interspersed than when they were separated in the training sequence. This strong
interference with category differentiation due to interspersed presentation is predicted by
our theory, but several other current models of unsupervised learning (especially those in
which the system learns by sampling and testing specific hypothesis, e.g., Billman &
Heit, 1988) cannot readily accomodate this finding.

-- nse--t--Figure-------about---here-
Insert Figure 5 about here

------------------------------------
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Experiment 4

In accumulating knowledge about a domain, people often develop a series of
related categories at multiple levels of specificity (see, e.g., Holland, Holyoak, Nisbett, &
Thagard, 1986). Many real-world domains, such as categories of animals, plants.
automobiles, jet aircraft, and medical diseases, are partitioned at more than one levc1 , as
some form of default hierarchy. Despite the prevalence and importance of conceptual
hierarchies, prior research on category learning has usually examined on!y single-levil
categories. The aim of this experiment was to test whether our attribute listing paradigm
could be used to study category learning in hiearchically organized stimulus domains.

This experiment was similar to Experiment 2 except that four categories were
used istead of two. instances of the first category -- call it A l -- were prese -ted for the
first ten trials, followed by tcn A2-instances, then ten B l's, and ten B2's. The default
values characterizing the four categories can be denoted as follows: A l = 111111 XX, A2
= 111222YY, B I = 222333QQ, and B2 = 222444RR, where X, Y, Q, and R denote
different pairs of values of v liable attributes occurring in each of the four categories. As
previously, subjects were asked to list the distinguishing features of each instance.

The results are displayed in Figure 6. Subjects decreased their listing of A-
defaults (attributes one through three) throughout the Al-instances and showed no
increase during A2, which shared these values (panel A of Figure 6). A marginally
significant increase in listing these attributes occurred for the first B 1-instance (p <. 10),
followed by a rapid decrease back to the zero baseline. For subordinate level defaults
(attributes four through six), listings reflected similar pattems of co-occurrence and
contrast, increasing sharply for each new subcategory and decreasing over successive
instances of the same subcategory (panel B of Figure 6). Importantly, reporting of
defaults at either level showed no significant increase on the first instance of the mixed
block. During this block, listing of defaults was over 80 percent lower than listing of
variable attributes (panel C), a highly significant difference.

Insert Figure 6 about here

These results indicate that subjects learned stable categories during the training
blocks and applied these categories to interpret instances during the mixed test block.
The patterns of listings also showed that subjects transferred superordinate defaults
across subcategories, since there was no increase in listing superordinate A-defaults when
the first instance of A2 was encountered, or of B-defaults for the first instance of B2, but
increases did occur for the changed, subordinate, defaults. These results Indicate that our
subjects learned to distinguish multiple categories within the hierarchically organizaed
domain. However, more research will be required to characterize details of how such
knowledge is organized in subjects' memories, and to identify boundary conditions and
major variables that influence learning in such domains.
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Figure 2. Sample stimuli from our similarity experiments. These fictitious insects share several default attribute

values within a category, and differ along several variable attributes. The instances depicted above are all from a

single category.
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Figure 3. Observed percentage of default values listed by subjects over successive instances of a single category.
An instance lacking the default was presented on trial "*"; the default was present in all subsequent instances.
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Figure 4. Observed percentage Of default values listed by subjects in a two-category experiment. The default
values were switched to Category-B at tra B. Instances of both categories were presented in random order during
the final, mixed blocL.
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Figure 5. Observed percentage of defaults (top) and variables (middle) listed in an experiment in which two
categories were presented in a mixed sequence. The bottom plot shows the difference in listing frequency between
the two feature types.
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